AML Data Quality: The Challenge of Fitting a Square Peg into a Round Hole

AML Data Quality: The Challenge of Fitting a Square Peg into a Round Hole

As mentioned in my previous articles, traditional rule-based transaction monitoring systems (TMS) have architectural limitations which make them prone to false positives and false negatives:

This article focuses on the third drawback of existing TMS solutions: how their inflexible data models lead to poor data quality, resulting in additional false positives and false negatives.

I think many of us working in the anti-money laundering (AML) technology space have experienced the frustration of spending many hours retrofitting new data types to squeeze into the rigid data model of a TMS. Unfortunately, the more effort we spend retrofitting data, the more likely we introduce data quality issues. Further, when we don’t complete it in a timely fashion, we’re exposed to risk of large fines from regulators. That said, there’s hope on the horizon from machine learning solutions that are more forgiving of disparate data formats.

Read More

The Other Elephant in the Room: Defeating False Negatives in AML Systems

The Other Elephant in the Room: Defeating False Negatives in AML Systems

False positives have a terrible reputation among anti-money laundering (AML) circles. As mentioned in my previous article on ending the false positive alerts plague, approximately 90-95 percent of alerts generated by Transaction Monitoring Systems (TMS) are false positives. So, why don’t we tighten our rule thresholds to let fewer alerts through?

Unfortunately, tightening thresholds typically increases false negative alerts, which are real money laundering activities that the TMS didn’t catch. Though false positive alerts lead to high operational overhead, false negative alerts can cost you both in reputation and in major fines and penalties. As AML teams know, regulators have no qualms handing over hefty fines, which have risen considerably in the last decade.

Read More